Khawarizmi الخوارزمي
Al-Khwarizmi was born in the year 780 AD in Khwarzim and lived in the city of Baghdad.
In the age of al-Ma'mun he took up his position in Dar al-Hikma (813-833 AD).
Muhammad ibn Musa al-Khwarizmi
Muḥammad ibn Mūsā al-Khwārizmī(Persian: محمد بن موسى خوارزمی; c. 780 – c. 850), formerly Latinized as Algorithmi, was a Persian scholar who produced works in mathematics, astronomy, and geography under the patronage of the Caliph Al-Ma'mun of the Abbasid Caliphate. Around 820 AD he was appointed as the astronomer and head of the library of the House of Wisdom in Baghdad.
Al-Khwarizmi's popularizing treatise on algebra (The Compendious Book on Calculation by Completion and Balancing, c. 813–833 CE) presented the first systematic solution of linear and quadratic equations. One of his principal achievements in algebra was his demonstration of how to solve quadratic equations by completing the square, for which he provided geometric justifications.:14 Because he was the first to treat algebra as an independent discipline and introduced the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation), he has been described as the father or founder of algebra. The term algebra itself comes from the title of his book (specifically the word al-jabr meaning "completion" or "rejoining"). His name gave rise to the terms algorism and algorithm. His name is also the origin of (Spanish) guarismo and of (Portuguese) algarismo, both meaning digit.
In the 12th century, Latin translations of his textbook on arithmetic (Algorithmo de Numero Indorum) which codified the various Indian numerals, introduced the decimal positional number system to the Western world. The Compendious Book on Calculation by Completion and Balancing, translated into Latin by Robert of Chester in 1145, was used until the sixteenth century as the principal mathematical text-book of European universities.
In addition to his best-known works, he revised Ptolemy's Geography, listing the longitudes and latitudes of various cities and localities.[22]:9 He further produced a set of astronomical tables and wrote about calendaric works, as well as the astrolabe and the sundial.
Life
Few details of al-Khwārizmī's life are known with certainty. He was born into a Persian[6]family and Ibn al-Nadim gives his birthplace as Khwarezm[23] in Greater Khorasan (modern Khiva, Xorazm Region, Uzbekistan).
Muhammad ibn Jarir al-Tabari gives his name as Muḥammad ibn Musá al-Khwārizmiyy al-Majūsiyy al-Quṭrubbaliyy (محمد بن موسى الخوارزميّ المجوسـيّ القطربّـليّ). The epithet al-Qutrubbulli could indicate he might instead have come from Qutrubbul (Qatrabbul), a viticulture district near Baghdad. However, Rashed suggests:
Regarding al-Khwārizmī's religion, Toomer writes:
Ibn al-Nadīm's Kitāb al-Fihrist includes a short biography on al-Khwārizmī together with a list of the books he wrote. Al-Khwārizmī accomplished most of his work in the period between 813 and 833. After the Muslim conquest of Persia, Baghdad became the centre of scientific studies and trade, and many merchants and scientists from as far as China and India traveled to this city, as did al-Khwārizmī. He worked in Baghdad as a scholar at the House of Wisdom established by Caliph al-Ma’mūn, where he studied the sciences and mathematics, which included the translation of Greek and Sanskrit scientific manuscripts.
Douglas Morton Dunlop suggests that it may have been possible that Muḥammad ibn Mūsā al-Khwārizmī was in fact the same person as Muḥammad ibn Mūsā ibn Shākir, the eldest of the three Banū Mūsā.
Contributions
Al-Khwārizmī systematized and corrected Ptolemy's data for Africa and the Middle East. Another major book was Kitab surat al-ard("The Image of the Earth"; translated as Geography), presenting the coordinates of places based on those in the Geography of Ptolemy but with improved values for the Mediterranean Sea, Asia, and Africa.
He also wrote on mechanical devices like the astrolabe and sundial.
He assisted a project to determine the circumference of the Earth and in making a world map for al-Ma'mun, the caliph, overseeing 70 geographers.
When, in the 12th century, his works spread to Europe through Latin translations, it had a profound impact on the advance of mathematics in Europe.
Algebra
- squares equal roots (ax2 = bx)
- squares equal number (ax2 = c)
- roots equal number (bx = c)
- squares and roots equal number (ax2 + bx = c)
- squares and number equal roots (ax2 + c = bx)
- roots and number equal squares (bx + c = ax2)
by dividing out the coefficient of the square and using the two operations al-jabr (Arabic: الجبر "restoring" or "completion") and al-muqābala ("balancing"). Al-jabr is the process of removing negative units, roots and squares from the equation by adding the same quantity to each side. For example, x2 = 40x − 4x2 is reduced to 5x2 = 40x. Al-muqābalais the process of bringing quantities of the same type to the same side of the equation. For example, x2 + 14 = x + 5 is reduced to x2 + 9 = x.
The above discussion uses modern mathematical notation for the types of problems which the book discusses. However, in al-Khwārizmī's day, most of this notation had not yet been invented, so he had to use ordinary text to present problems and their solutions. For example, for one problem he writes, (from an 1831 translation)
In modern notation this process, with x the "thing" (شيء shayʾ) or "root", is given by the steps,
Let the roots of the equation be x = p and x = q. Then , and
So a root is given by
Several authors have also published texts under the name of Kitāb al-jabr wal-muqābala, including Abū Ḥanīfa Dīnawarī, Abū Kāmil Shujāʿ ibn Aslam, Abū Muḥammad al-‘Adlī, Abū Yūsuf al-Miṣṣīṣī, 'Abd al-Hamīd ibn Turk, Sind ibn ‘Alī, Sahl ibn Bišr, and Sharaf al-Dīn al-Ṭūsī.
J.J. O'Conner and E.F. Robertson wrote in the MacTutor History of Mathematics archive:
R. Rashed and Angela Armstrong write:
According to Swiss-American historian of mathematics, Florian Cajori, Al-Khwarizmi's algebra was different from the work of Indian mathematicians, for Indians had no rules like the ''restoration'' and ''reduction''.[36] Regarding the dissimilarity and significance of Al-Khwarizmi's algebraic work from that of Indian Mathematician Brahmagupta, Carl Benjamin Boyer wrote:
Arithmetic
Al-Khwārizmī's second major work was on the subject of arithmetic, which survived in a Latin translation but was lost in the original Arabic. The translation was most likely done in the 12th century by Adelard of Bath, who had also translated the astronomical tables in 1126.
The Latin manuscripts are untitled, but are commonly referred to by the first two words with which they start: Dixit algorizmi ("So said"), or Algoritmi de numero Indorum ("al-Khwārizmī on the Hindu Art of Reckoning"), a name given to the work by Baldassarre Boncompagni in 1857. The original Arabic title was possibly Kitāb al-Jam‘ wat-Tafrīq bi-Ḥisāb al-Hind ("The Book of Addition and Subtraction According to the Hindu Calculation").
Al-Khwārizmī's work on arithmetic was responsible for introducing the Arabic numerals, based on the Hindu–Arabic numeral system developed in Indian mathematics, to the Western world. The term "algorithm" is derived from the algorism, the technique of performing arithmetic with Hindu-Arabic numerals developed by al-Khwārizmī. Both "algorithm" and "algorism" are derived from the Latinized forms of al-Khwārizmī's name, Algoritmi and Algorismi, respectively.
Astronomy
Trigonometry
Al-Khwārizmī's Zīj al-Sindhind also contained tables for the trigonometric functions of sines and cosine.[41] A related treatise on spherical trigonometry is also attributed to him.
Geography
Al-Khwārizmī corrected Ptolemy's gross overestimate for the length of the Mediterranean Sea from the Canary Islandsto the eastern shores of the Mediterranean; Ptolemy overestimated it at 63 degrees of longitude, while al-Khwārizmī almost correctly estimated it at nearly 50 degrees of longitude. He "also depicted the Atlantic and Indian Oceans as open bodies of water, not land-locked seas as Ptolemy had done." Al-Khwārizmī's Prime Meridian at the Fortunate Isles was thus around 10° east of the line used by Marinus and Ptolemy. Most medieval Muslim gazetteers continued to use al-Khwārizmī's prime meridian.
Jewish calendar
Al-Khwārizmī wrote several other works including a treatise on the Hebrew calendar, titled Risāla fi istikhrāj ta’rīkh al-yahūd (Arabic: رسالة في إستخراج تأريخ اليهود, "Extraction of the Jewish Era"). It describes the Metonic cycle, a 19-year intercalation cycle; the rules for determining on what day of the week the first day of the month Tishrei shall fall; calculates the interval between the Anno Mundi or Jewish year and the Seleucid era; and gives rules for determining the mean longitude of the sun and the moon using the Hebrew calendar. Similar material is found in the works of Abū Rayḥān al-Bīrūnī and Maimonides.
Other works
Ibn al-Nadim's Kitāb al-Fihrist, an index of Arabic books, mentions al-Khwārizmī's Kitāb al-Taʾrīkh (Arabic: كتاب التأريخ), a book of annals. No direct manuscript survives; however, a copy had reached Nusaybin by the 11th century, where its metropolitan bishop, Mar Elyas bar Shinaya, found it. Elias's chronicle quotes it from "the death of the Prophet" through to 169 AH, at which point Elias's text itself hits a lacuna.
Several Arabic manuscripts in Berlin, Istanbul, Tashkent, Cairo and Paris contain further material that surely or with some probability comes from al-Khwārizmī. The Istanbul manuscript contains a paper on sundials; the Fihrist credits al-Khwārizmī with Kitāb ar-Rukhāma(t) (Arabic: كتاب الرخامة). Other papers, such as one on the determination of the direction of Mecca, are on the spherical astronomy.
Two texts deserve special interest on the morning width (Ma‘rifat sa‘at al-mashriq fī kull balad) and the determination of the azimuthfrom a height (Ma‘rifat al-samt min qibal al-irtifā‘).
He also wrote two books on using and constructing astrolabes.
His period of study was science, astronomy and geography. Especially in the subsections of the account and algebra, where he presented the writings of famous Khwarizmi in the Western world and knew him through them.
The most important work of al-Khawarizmi in mathematics (book algebra and interview), and (the book of the abbreviation in the calculation of algebra and interview), translated this book to its great importance to other languages such as the Latin language, and also (the book of arithmetic), which had a major role in the world's knowledge of the number zero and numbers And Al-Khawarizmi provided tables to find triangular ratios (pocket and triangle angles), and introduced algorithms.
These algorithms are used in mathematics and computers.
Al-Khawarizmi called the computer's father for his great role in computers through algorithms Presented by, and others Achievements and literature, which are still taught so far and rely reliable references all over the world.
As for the death of Al-Khwarizmi died - may God have mercy on him - in the year 850 AD.
0 Comments