Translate

Pythagoreanism

Pythagoreanism
Pythagoreanism
General features of Pythagoreanism

The character of the original Pythagoreanism is controversial, and the conglomeration of disparatefeatures that it displayed is intrinsically confusing. Its fame rests, however, on some very influential ideas, not always correctly understood, that have been ascribed to it since antiquity. These ideas include those of (1) the metaphysic of number and the conception that reality, including music and astronomy, is, at its deepest level, mathematical in nature; (2) the use of philosophy as a means of spiritual purification; (3) the heavenly destiny of the soul and the possibility of its rising to union with the divine; (4) the appeal to certain symbols, sometimes mystical, such as the tetraktys, the golden section, and the harmony of the spheres; (5) the Pythagorean theorem; and (6) the demand that members of the order shall observe a strict loyalty and secrecy.

By laying stress on certain inner experiences and intuitive truths revealed only to the initiated, Pythagoreanism seems to have represented a soul-directed subjectivism alien to the mainstream of pre-Socratic Greek thought centring on the Ionian coast of Asia Minor, which was preoccupied with determining what the basic cosmic substance is.

In contrast with such Ionian naturalism, Pythagoreanism was akin to trends seen in mystery religions and emotional movements, such as Orphism, which often claimed to achieve through intoxication a spiritual insight into the divine origin and nature of the soul. Yet there are also aspects of it that appear to have owed much to the more sober, “Homeric” philosophy of the Ionians. The Pythagoreans, for example, displayed an interest in metaphysics, as did their naturalistic predecessors, though they claimed to find its key in mathematical form rather than in any substance. They accepted the essentially Ionian doctrines that the world is composed of opposites (wet-dry, hot-cold, and so on) and generated from something unlimited; but they added the idea of the imposition of limit upon the unlimited and the sense of a musical harmony in the universe. Again, like the Ionians, they devoted themselves to astronomical and geometrical speculation. Combining, as it does, a rationalistic theory of number with a mystic numerology and a speculative cosmologywith a theory of the deeper, more enigmatic reaches of the soul, Pythagoreanism interweaves rationalism and irrationalism more inseparably than does any other movement in ancient Greek thought.
Major concerns and teachings

The problem of describing Pythagoreanism is complicated by the fact that the surviving picture is far from complete, being based chiefly on a small number of fragments from the time before Plato (c. 428–c. 348 bce) and on various discussions in authors who wrote much later—most of whom were either Aristotelians or Neoplatonists (see below History of Pythagoreanism). In spite of the historical uncertainties, however, that have plagued searching scholars, the contribution of Pythagoreanism to Western culture has been significant and therefore justifies the effort, however inadequate, to depict what its teachings may have been. Moreover, the heterogeneousness of Pythagorean doctrines has been well documented ever since Heracleitus, a classic early 5th-century Greek philosopher who, scoffing at Pythagoras’s wide-ranging knowledge, said that it “does not teach one to have intelligence.” There probably never existed a strictly uniform system of Pythagorean philosophy and religious beliefs, even if the school did have a certain internal organization. Pythagoras appears to have taught by pregnant, cryptic akousmata (Greek: literally, “something heard”) or symbola (“symbols”). His pupils handed these on, formed them partly into Hieroi Logoi (“Sacred Discourses”), of which different versions were current from the 4th century on, and interpreted them according to their convictions.

Astronomy

In their cosmological views the earliest Pythagoreans probably differed little from their Ionian predecessors. They made a point of studying the stellar heavens; but—with the possible exception of the theory of musical intervals in the cosmos—no new contributions to astronomy can be ascribed to them with any degree of probability. Late in the 5th century, or possibly in the 4th century, a Pythagorean boldly abandoned the geocentric view and posited a cosmological model in which the Earth, Sun, and stars circle about an (unseen) central fire—a view traditionally attributed to the 5th-century Pythagorean Philolaus of Croton.

History of Pythagoreanism

The life of Pythagoras and the origins of Pythagoreanism appear only dimly through a thick veil of legend and semihistorical tradition. The literary sources for the teachings of the Pythagoreans present extremely complicated problems. Special difficulties arise from the oral and esoteric transmission of the early doctrines, the profuse accumulation of tendentious legends, and the considerable amount of confusion that was caused by the split in the school in the 5th century bce. In the 4th century, Plato’s inclination toward Pythagoreanism created a tendency—manifest already in the middle of the century in the works of his pupils—to interpret Platonic concepts as originally Pythagorean. But the radical skepticism as to the reliability of the sources shown by some scholars has on the whole been abandoned. It now seems possible to extract bits of reliable evidence from a wide range of ancient authors, such as Porphyry and Iamblichus (see below Neo-Pythagoreanism).

Pythagoras, portrait bust

Most of these literary sources hark back ultimately to the environment of Plato and Aristotle; and here the importance of one of Aristotle’s students has become obvious, viz., the musicologist and philosopher Aristoxenus, who in spite of his bias possessed firsthand information independent of the point of view of Plato’s Academy. The role played by Dicaearchus, another of Aristotle’s pupils, and by the Sicilian historian Timaeus, of the early 3rd century bce, is less clear. The reliability of Aristotle’s account of Pythagoreanism has also been emphasized against the doubts that had been expressed by some scholars; but Aristotle’s sources, in turn, hardly lead farther back than to the late 5th century (perhaps to Philolaus; see below Two Pythagorean sects). In addition, there are scattered hints in various early authors and in some not very substantial remains of 4th-century Pythagorean literature. The mosaic of reconstruction thus has to be to some extent subjective.

Early Pythagoreanism

Within the ancient Pythagorean movement four chief periods can be distinguished: early Pythagoreanism, dating from the late 6th century bce and extending to about 400 bce; 4th-century Pythagoreanism; the Hellenistic trends; and Neo-Pythagoreanism, a revival that occurred in the mid-1st century ce and lasted for two and a half centuries.

Background

The background of Pythagoreanism is complex, but two main groups of sources can be distinguished. The Ionian philosophers—Thales, Anaximander, Anaximenes, and others—provided Pythagoras with the problem of a single cosmic principle, the doctrine of opposites, and whatever reflections of Eastern mathematics there are in Pythagoreanism; and from the technicians of his birthplace, the Isle of Samos, he learned to understand the importance of number, measurements, and proportions. Popular cults and beliefs current in the 6th century and reflected in the tenets of Orphism introduced him to the notions of occultism and ritualism and to the doctrine of individual immortality. In view of the shamanistic traits of Pythagoreanism, reminiscent of Thracian cults, it is interesting to note that Pythagoras seems to have had a Thracian slave.

Pythagorean communities

The school apparently founded by Pythagoras at Croton in southern Italy seems to have been primarily a religious brotherhood centred around Pythagoras and the cults of Apollo and of the Muses, ancient patron goddesses of poetry and culture. It became perhaps successively institutionalized and received different classes of esoteric members and exoteric sympathizers. The rigorism of the ritual and ethical observances demanded of the members is unparalleled in early Greece; in addition to the rules of life mentioned above, it is fairly well attested that secrecy and a long silence during the novitiate were required. The exoteric associates, however, were politically active and established a Crotonian hegemony in southern Italy. About 500 bce a coup by a rival party caused Pythagoras to take refuge in Metapontum, where he died.

During the early 5th century, Pythagorean communities, inspired by the original school at Croton, existed in many southern Italian cities, a fact that led to some doctrinal differentiation and diffusion. In the course of time the politics of the Pythagorean parties became decidedly antidemocratic. About the middle of the century a violent democratic revolution swept over southern Italy; in its wake, many Pythagoreans were killed, and only a few escaped, among them Lysis of Tarentum and Philolaus, who went to Greece and formed small Pythagorean circles in Thebes and Phlious.

Two Pythagorean sects

Little is known about Pythagorean activity during the latter part of the 5th century. The differentiation of the school into two main sects, later called akousmatikoi(from akousma, viz., the esoteric teachings) and mathēmatikoi (from mathēmatikos, “scientific”), may have occurred at that time. The acousmatics devoted themselves to the observance of rituals and rules and to the interpretation of the sayings of the master; the “mathematics” were concerned with the scientific aspects of Pythagoreanism. Philolaus, who was rather a mathematic, probably published a summary of Pythagorean philosophy and science in the late 5th century.

4th-century Pythagoreanism

In the first half of the 4th century, Tarentum, in southern Italy, rose into considerable significance. Under the political and spiritual leadership of the mathematic Archytas, a friend of Plato, Tarentum became a new centre of Pythagoreanism, from which acousmatics—so-called Pythagorists who did not sympathize with Archytas—went out travelling as mendicant ascetics all around the Greek-speaking world. The acousmatics seem to have preserved some early Pythagorean Hieroi Logoi and ritual practices. Archytas himself, on the other hand, concentrated on scientific problems, and the organization of his Pythagorean brotherhood was evidently less rigorous than that of the early school. After the 380s there was a give-and-take between the school of Archytas and the Academy of Plato, a relationship that makes it almost impossible to disentangle the original achievements of Archytas from joint involvements (but see above, Geometry and Music).

The Hellenistic Age

Whereas the school of Archytas apparently sank into inactivity after the death of its founder (probably after 350 bce), the Academics of the next generation continued “Pythagorizing” Platonic doctrines, such as that of the supreme One, the indefinite dyad (a metaphysical principle), and the tripartite soul. At the same time, various Peripatetics of the school of Aristotle, including Aristoxenus, collected Pythagorean legends and applied contemporary ethical notions to them. In the Hellenistic Age, the Academic and Peripatetic views gave rise to a rather fanciful antiquarian literature on Pythagoreanism. There also appeared a large and yet more heterogeneous mass of apocryphal writings falsely attributed to different Pythagoreans, as if attempts were being made to revive the school. The texts fathered on Archytas display Academic and Peripatetic philosophies mixed with some notions that were originally Pythagorean. Other texts were fathered on Pythagoras himself or on his immediate pupils, imagined or real. Some show, for instance, that Pythagoreanism had become confused with Orphism; others suggest that Pythagoras was considered a magician and an astrologist; there are also indications of Pythagoras “the athlete” and “the Dorian nationalist.” But the anonymous authors of this pseudo-Pythagorean literature did not succeed in reestablishing the school, and the “Pythagorean” congregations formed in early imperial Rome seem to have had little in common with the original school of Pythagoreanism established in the late 6th century bce; they were ritualistic sects that adopted, eclectically, various occult practices.

Neo-Pythagoreanism

With the ascetic sage Apollonius of Tyana, about the middle of the 1st century ce, a distinct Neo-Pythagorean trend appeared. Apollonius studied the Pythagorean legends of the previous centuries, created and propagated the ideal of a Pythagorean life—of occult wisdom, purity, universal tolerance, and approximation to the divine—and felt himself to be a reincarnation of Pythagoras. Through the activities of Neo-Pythagorean Platonists, such as Moderatus of Gades, a pagan trinitarian, and the arithmetician Nicomachus of Gerasa, both of the 1st century ce, and, in the 2nd or 3rd century, Numenius of Apamea, forerunner of Plotinus (an epoch-making elaborator of Platonism), Neo-Pythagoreanism gradually became a part of the expression of Platonism known as Neoplatonism; and it did so without having achieved a scholastic system of its own. The founder of a Syrian school of Neoplatonism, Iamblichus, a pupil of Porphyry (who in turn had been a pupil of Plotinus), thought of himself as a Pythagorean sage and about 300 ce wrote the last great synthesis of Pythagoreanism, in which most of the disparate post-classical traditions are reflected. It is characteristic of the Neo-Pythagoreans that they were chiefly interested in the Pythagorean way of life and in the pseudoscience of number mysticism. On a more popular level, Pythagoras and Archytas were remembered as magicians. Moreover, it has been suggested that Pythagorean legends were also influential in guiding the Christian monastic tradition.

Medieval and modern trends

In the Middle Ages the popular conception of Pythagoras the magician was combined with that of Pythagoras “the father of the quadrivium”—i.e., of the more specialized liberal arts of the curriculum. From the Italian Renaissance onward, some “Pythagorean” ideas, such as the tetrad, the golden section, and harmonic proportions, became applied to aesthetics. To many humanists, moreover, Pythagoras was the father of the exact sciences. In the early 16th century, Nicolaus Copernicus, who developed the view that the Earth revolves around the Sun, considered his system to be essentially Pythagorean or “Philolaic,” and Galileo was called a Pythagorean. The 17th-century rationalist Gottfried Wilhelm Leibniz appears to have been the last great philosopher and scientist who felt himself to be in the Pythagorean tradition.

It is doubtful whether advanced modern philosophy has ever drawn from sources thought to be distinctly Pythagorean. Yet Platonic-Neoplatonic notions, such as the mathematical conception of reality or the philosopher’s union with the universe, and various mystical beliefs are still likely to be stamped as Pythagorean in origin.

Evaluation

The history of the projection of Pythagoreanism into subsequent thought indicates how fertile some of its core concepts were. Plato is here the great catalyst; but it is possible to perceive behind him, however dimly, a series of Pythagorean ideas of paramount potential significance: the combination of religious esoterism (or exclusivism) with the germs of a new philosophy of mind, present in the belief in the progress of the soul toward the actualization of its divine nature and toward knowledge; stress upon harmony and order, and upon limit as the good; the primacy of form, proportion, and numerical expression; and, in ethics, an emphasis upon such virtues as friendship and modesty. The fact that Pythagoras, to later ages, also became alternatively conceived of as a Dorian nationalist, a sportsman, an educator of the people, or a great magician is a more curious consequence of the productivity of his teaching.


Post a Comment

0 Comments